home *** CD-ROM | disk | FTP | other *** search
- *
- ************************************************************************
- *
- SUBROUTINE DTRSV ( UPLO, TRANS, DIAG, N, A, LDA, X, INCX )
- * .. Scalar Arguments ..
- INTEGER INCX, LDA, N
- CHARACTER*1 DIAG, TRANS, UPLO
- * .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), X( * )
- * ..
- *
- * Purpose
- * =======
- *
- * DTRSV solves one of the systems of equations
- *
- * A*x = b, or A'*x = b,
- *
- * where b and x are n element vectors and A is an n by n unit, or
- * non-unit, upper or lower triangular matrix.
- *
- * No test for singularity or near-singularity is included in this
- * routine. Such tests must be performed before calling this routine.
- *
- * Parameters
- * ==========
- *
- * UPLO - CHARACTER*1.
- * On entry, UPLO specifies whether the matrix is an upper or
- * lower triangular matrix as follows:
- *
- * UPLO = 'U' or 'u' A is an upper triangular matrix.
- *
- * UPLO = 'L' or 'l' A is a lower triangular matrix.
- *
- * Unchanged on exit.
- *
- * TRANS - CHARACTER*1.
- * On entry, TRANS specifies the equations to be solved as
- * follows:
- *
- * TRANS = 'N' or 'n' A*x = b.
- *
- * TRANS = 'T' or 't' A'*x = b.
- *
- * TRANS = 'C' or 'c' A'*x = b.
- *
- * Unchanged on exit.
- *
- * DIAG - CHARACTER*1.
- * On entry, DIAG specifies whether or not A is unit
- * triangular as follows:
- *
- * DIAG = 'U' or 'u' A is assumed to be unit triangular.
- *
- * DIAG = 'N' or 'n' A is not assumed to be unit
- * triangular.
- *
- * Unchanged on exit.
- *
- * N - INTEGER.
- * On entry, N specifies the order of the matrix A.
- * N must be at least zero.
- * Unchanged on exit.
- *
- * A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
- * Before entry with UPLO = 'U' or 'u', the leading n by n
- * upper triangular part of the array A must contain the upper
- * triangular matrix and the strictly lower triangular part of
- * A is not referenced.
- * Before entry with UPLO = 'L' or 'l', the leading n by n
- * lower triangular part of the array A must contain the lower
- * triangular matrix and the strictly upper triangular part of
- * A is not referenced.
- * Note that when DIAG = 'U' or 'u', the diagonal elements of
- * A are not referenced either, but are assumed to be unity.
- * Unchanged on exit.
- *
- * LDA - INTEGER.
- * On entry, LDA specifies the first dimension of A as declared
- * in the calling (sub) program. LDA must be at least
- * max( 1, n ).
- * Unchanged on exit.
- *
- * X - DOUBLE PRECISION array of dimension at least
- * ( 1 + ( n - 1 )*abs( INCX ) ).
- * Before entry, the incremented array X must contain the n
- * element right-hand side vector b. On exit, X is overwritten
- * with the solution vector x.
- *
- * INCX - INTEGER.
- * On entry, INCX specifies the increment for the elements of
- * X. INCX must not be zero.
- * Unchanged on exit.
- *
- *
- * Level 2 Blas routine.
- *
- * -- Written on 22-October-1986.
- * Jack Dongarra, Argonne National Lab.
- * Jeremy Du Croz, Nag Central Office.
- * Sven Hammarling, Nag Central Office.
- * Richard Hanson, Sandia National Labs.
- *
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO
- PARAMETER ( ZERO = 0.0D+0 )
- * .. Local Scalars ..
- DOUBLE PRECISION TEMP
- INTEGER I, INFO, IX, J, JX, KX
- LOGICAL NOUNIT
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * .. External Subroutines ..
- EXTERNAL XERBLA
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF ( .NOT.LSAME( UPLO , 'U' ).AND.
- $ .NOT.LSAME( UPLO , 'L' ) )THEN
- INFO = 1
- ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND.
- $ .NOT.LSAME( TRANS, 'T' ).AND.
- $ .NOT.LSAME( TRANS, 'C' ) )THEN
- INFO = 2
- ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND.
- $ .NOT.LSAME( DIAG , 'N' ) )THEN
- INFO = 3
- ELSE IF( N.LT.0 )THEN
- INFO = 4
- ELSE IF( LDA.LT.MAX( 1, N ) )THEN
- INFO = 6
- ELSE IF( INCX.EQ.0 )THEN
- INFO = 8
- END IF
- IF( INFO.NE.0 )THEN
- CALL XERBLA( 'DTRSV ', INFO )
- RETURN
- END IF
- *
- * Quick return if possible.
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- NOUNIT = LSAME( DIAG, 'N' )
- *
- * Set up the start point in X if the increment is not unity. This
- * will be ( N - 1 )*INCX too small for descending loops.
- *
- IF( INCX.LE.0 )THEN
- KX = 1 - ( N - 1 )*INCX
- ELSE IF( INCX.NE.1 )THEN
- KX = 1
- END IF
- *
- * Start the operations. In this version the elements of A are
- * accessed sequentially with one pass through A.
- *
- IF( LSAME( TRANS, 'N' ) )THEN
- *
- * Form x := inv( A )*x.
- *
- IF( LSAME( UPLO, 'U' ) )THEN
- IF( INCX.EQ.1 )THEN
- DO 20, J = N, 1, -1
- IF( X( J ).NE.ZERO )THEN
- IF( NOUNIT )
- $ X( J ) = X( J )/A( J, J )
- TEMP = X( J )
- DO 10, I = J - 1, 1, -1
- X( I ) = X( I ) - TEMP*A( I, J )
- 10 CONTINUE
- END IF
- 20 CONTINUE
- ELSE
- JX = KX + ( N - 1 )*INCX
- DO 40, J = N, 1, -1
- IF( X( JX ).NE.ZERO )THEN
- IF( NOUNIT )
- $ X( JX ) = X( JX )/A( J, J )
- TEMP = X( JX )
- IX = JX
- DO 30, I = J - 1, 1, -1
- IX = IX - INCX
- X( IX ) = X( IX ) - TEMP*A( I, J )
- 30 CONTINUE
- END IF
- JX = JX - INCX
- 40 CONTINUE
- END IF
- ELSE
- IF( INCX.EQ.1 )THEN
- DO 60, J = 1, N
- IF( X( J ).NE.ZERO )THEN
- IF( NOUNIT )
- $ X( J ) = X( J )/A( J, J )
- TEMP = X( J )
- DO 50, I = J + 1, N
- X( I ) = X( I ) - TEMP*A( I, J )
- 50 CONTINUE
- END IF
- 60 CONTINUE
- ELSE
- JX = KX
- DO 80, J = 1, N
- IF( X( JX ).NE.ZERO )THEN
- IF( NOUNIT )
- $ X( JX ) = X( JX )/A( J, J )
- TEMP = X( JX )
- IX = JX
- DO 70, I = J + 1, N
- IX = IX + INCX
- X( IX ) = X( IX ) - TEMP*A( I, J )
- 70 CONTINUE
- END IF
- JX = JX + INCX
- 80 CONTINUE
- END IF
- END IF
- ELSE
- *
- * Form x := inv( A' )*x.
- *
- IF( LSAME( UPLO, 'U' ) )THEN
- IF( INCX.EQ.1 )THEN
- DO 100, J = 1, N
- TEMP = X( J )
- DO 90, I = 1, J - 1
- TEMP = TEMP - A( I, J )*X( I )
- 90 CONTINUE
- IF( NOUNIT )
- $ TEMP = TEMP/A( J, J )
- X( J ) = TEMP
- 100 CONTINUE
- ELSE
- JX = KX
- DO 120, J = 1, N
- TEMP = X( JX )
- IX = KX
- DO 110, I = 1, J - 1
- TEMP = TEMP - A( I, J )*X( IX )
- IX = IX + INCX
- 110 CONTINUE
- IF( NOUNIT )
- $ TEMP = TEMP/A( J, J )
- X( JX ) = TEMP
- JX = JX + INCX
- 120 CONTINUE
- END IF
- ELSE
- IF( INCX.EQ.1 )THEN
- DO 140, J = N, 1, -1
- TEMP = X( J )
- DO 130, I = N, J + 1, -1
- TEMP = TEMP - A( I, J )*X( I )
- 130 CONTINUE
- IF( NOUNIT )
- $ TEMP = TEMP/A( J, J )
- X( J ) = TEMP
- 140 CONTINUE
- ELSE
- KX = KX + ( N - 1 )*INCX
- JX = KX
- DO 160, J = N, 1, -1
- TEMP = X( JX )
- IX = KX
- DO 150, I = N, J + 1, -1
- TEMP = TEMP - A( I, J )*X( IX )
- IX = IX - INCX
- 150 CONTINUE
- IF( NOUNIT )
- $ TEMP = TEMP/A( J, J )
- X( JX ) = TEMP
- JX = JX - INCX
- 160 CONTINUE
- END IF
- END IF
- END IF
- *
- RETURN
- *
- * End of DTRSV .
- *
- END
-